Label

Télécharger Iterative Methods for Sparse Linear Systems Livre PDF Gratuit

★★★★☆

4.2 étoiles sur 5 de 923 avis

2003-04-01
Iterative Methods for Sparse Linear Systems - de Yousef Saad (Author)

Caractéristiques Iterative Methods for Sparse Linear Systems

Le paragraphe ci-dessous contient les informations complètes relatives aux Iterative Methods for Sparse Linear Systems

Le Titre Du FichierIterative Methods for Sparse Linear Systems
Date de Lancement2003-04-01
TraducteurCorri Ludmila
Quantité de Pages735 Pages
La taille du fichier24.11 MB
LangageAnglais et Français
ÉditeurAdarna House
ISBN-101064139065-RGP
Type de DonnéesPDF EPub AMZ AFP QUOX
ÉcrivainYousef Saad
Digital ISBN012-4650302361-GGC
Nom de FichierIterative-Methods-for-Sparse-Linear-Systems.pdf

Télécharger Iterative Methods for Sparse Linear Systems Livre PDF Gratuit

Iterative methods for sparse linear systems Yousef Saad Cambridge University Press Des milliers de livres avec la livraison chez vous en 1 jour ou en magasin avec 5 de réduction

Noté 005 Retrouvez Iterative Methods for Sparse Linear Systems et des millions de livres en stock sur Achetez neuf ou doccasion

A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator and its resilience to soft errors Aygul Jamal To cite this version Aygul Jamal A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator and its resilience to soft errors Distributed Parallel and Cluster Computing

Achetez et téléchargez ebook Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications Chapman HallCRC Monographs and Research Notes in Mathematics English Edition Boutique Kindle Algebra

The discretisation of partial differential equations by either finite element or finite difference techniques often leads to large linear systems of equations with sparse matrices Fast iterative solution methods based upon the preconditioning of the conjugate gradients method have been proposed for the symmetric positive definite case and

Parallel resolution of sparse linear systems by mixing direct and iterative methods Jérémie Gaidamour 1 2 Pascal Hénon 1 2 Jean Roman 1 2 Yousef Saad 3 4 5 Détails 1 SCALAPPLIX Algorithms and high performance computing for grand challenge applications

This graduatelevel text examines the practical use of iterative methods in solving large sparse systems of linear algebraic equations and in resolving multidimensional boundaryvalue problems


Related Posts
Disqus Comments