★★★★☆
4.2 étoiles sur 5 de 923 avis
2003-04-01
Iterative Methods for Sparse Linear Systems - de Yousef Saad (Author)
Caractéristiques Iterative Methods for Sparse Linear Systems
Le paragraphe ci-dessous contient les informations complètes relatives aux Iterative Methods for Sparse Linear Systems
Le Titre Du Fichier | Iterative Methods for Sparse Linear Systems |
Date de Lancement | 2003-04-01 |
Traducteur | Corri Ludmila |
Quantité de Pages | 735 Pages |
La taille du fichier | 24.11 MB |
Langage | Anglais et Français |
Éditeur | Adarna House |
ISBN-10 | 1064139065-RGP |
Type de Données | PDF EPub AMZ AFP QUOX |
Écrivain | Yousef Saad |
Digital ISBN | 012-4650302361-GGC |
Nom de Fichier | Iterative-Methods-for-Sparse-Linear-Systems.pdf |
Télécharger Iterative Methods for Sparse Linear Systems Livre PDF Gratuit
Iterative methods for sparse linear systems Yousef Saad Cambridge University Press Des milliers de livres avec la livraison chez vous en 1 jour ou en magasin avec 5 de réduction
Noté 005 Retrouvez Iterative Methods for Sparse Linear Systems et des millions de livres en stock sur Achetez neuf ou doccasion
A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator and its resilience to soft errors Aygul Jamal To cite this version Aygul Jamal A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator and its resilience to soft errors Distributed Parallel and Cluster Computing
Achetez et téléchargez ebook Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications Chapman HallCRC Monographs and Research Notes in Mathematics English Edition Boutique Kindle Algebra
The discretisation of partial differential equations by either finite element or finite difference techniques often leads to large linear systems of equations with sparse matrices Fast iterative solution methods based upon the preconditioning of the conjugate gradients method have been proposed for the symmetric positive definite case and
Parallel resolution of sparse linear systems by mixing direct and iterative methods Jérémie Gaidamour 1 2 Pascal Hénon 1 2 Jean Roman 1 2 Yousef Saad 3 4 5 Détails 1 SCALAPPLIX Algorithms and high performance computing for grand challenge applications
This graduatelevel text examines the practical use of iterative methods in solving large sparse systems of linear algebraic equations and in resolving multidimensional boundaryvalue problems